На правах рукописи

Shypul

КУЗЬМИН Антон Васильевич

ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ГЕНЕРАЦИИ СУЛЬФОНИЛНИТРЕНОВ И ИХ ВЗАИМОДЕЙСТВИЯ С ОЛЕФИНАМИ

Специальность 02.00.03 – органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Иркутском институте химии им. А. Е. Фаворского Сибирского отделения РАН

Научный руководитель	доктор химических наук, профессор Шаинян Баграт Арменович		
Официальные оппоненты:	Грицан Нина Павловна, доктор химических наук, профессор, ФГБУН Институт химической кинетики и горения им. В. В. Воеводского СО РАН, лаборатория механизмов реакций, заведующая		
	Кобычев Владимир Борисович, доктор химических наук, профессор ФГБОУ ВО «Иркутский государственный университет», кафедра физической и коллоидной химии, профессор		
Ведущая организация	ФГБУН Новосибирский институт органической химии им. Н. Н. Ворожцова		

Защита состоится 15 ноября 2016 года в 9⁰⁰ часов на заседании диссертационного совета Д 003.052.01 на базе Иркутского института химии им. А. Е. Фаворского СО РАН по адресу: 664033, Иркутск, ул. Фаворского, 1.

СО РАН, г. Новосибирск

С диссертацией можно ознакомиться в научной библиотеке Иркутского института химии им. А. Е. Фаворского СО РАН и на сайте <u>http://www.irkinstchem.ru.</u>

Автореферат разослан «____» сентября 2016 г.

Ученый секретарь диссертационного совета д.х.н.

Тимохина Людмила Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Одной из задач органической химии является изучение механизмов химических реакций, глубокое понимание которых лежит в основе большого числа промышленных и биохимических процессов. Интермедиаты во многих из этих процессов характеризуются коротким временем жизни (от нескольких пикосекунд до десятков микросекунд) и очень высокой реакционной способностью. Среди них в отдельную группу выделяют секстетные валентно-ненасыщенные интермедиаты – нитрены (изоэлектронные аналоги карбенов). Данные соединения имеют широкие возможности практического применения в таких областях как фотохимия, биохимия, спектроскопия, материаловедение, литография, и др. Такой интерес вызван возможностью управлять реакционной способностью и физическими свойствами в зависимости от структуры и спинового состояния нитренов.

Среди нитренов особое место занимают сульфонилнитрены и другие нитрены с электроноакцепторными заместителями у атома азота, проявляющие свойства сильных электрофилов в синглетном состоянии. Значительный прогресс в изучении процессов генерации и превращений сульфонилнитренов связан, в первую очередь, с развитием низкотемпературных методов анализа (ЭПР и матричная изоляционная спектроскопия и др.), методов высокоскоростной лазерной спектроскопии (нано- и фемтосекундная ИК спектроскопия), а также развитием современных квантовохимических методов. Наиболее ценными продуктами взаимодействия сульфонилнитренов являются *N*-сульфонилазиридины и *N*-функционализированные сульфонамиды, получаемые, например, по реакциям сульфонилнитренов с олефинами.

Актуальной проблемой, требующей решения, является поиск новых прекурсоров для генерации и изучения свойств сульфонилнитренов. В большинстве работ в качестве прекурсоров используются азиды, хотя известны и другие соединения. Поэтому, исследование спектроскопических и кинетических свойств сульфонилнитренов, наряду с поиском их новых прекурсоров, а также исследование механизмов реакций с участием сульфонилнитренов является актуальной задачей.

Исследования проводились в соответствии с планом НИР Иркутского института химии им. А. Е. Фаворского СО РАН по теме: «Направленный синтез, изучение строения и реакционной способности сульфидов, сульфонамидов, азолов, трифламида и гетероатомных производных кремнийорганических соединений» (№ государственной регистрации 01201281994). Работа была поддержана грантом Российского фонда фундаментальных исследований (12-03-31295) и Германской службы академических обменов (91529234-57048249).

Целью работы является теоретическое и экспериментальное изучение процессов генерации сульфонилнитренов из различных прекурсоров и изучение механизмов взаимодействия сульфонилнитренов с этиленом и 1,3-бутадиеном. Для достижения поставленной цели предполагалось решить следующие задачи:

1. Методом B3LYP/6-31+G(d) изучить влияние заместителей в сериях карбенов и нитренов на величину синглет-триплетного расщепления ΔE_{ST} . Провести сравнительную оценку величины ΔE_{ST} для некоторых представителей карбенов и нитренов методом связанных кластеров CCSD(T) и теории возмущений MP2.

2. Используя метод B3LYP/6-311++G(d,p) изучить образование синглетных и триплетных сульфонилнитренов RSO₂N путем элиминирования простых молекул из таких прекурсоров как: сульфонилазиды, N-хлорсульфонамиды и их соли, N-гидроксисульфонамиды, а также сульфонилимино- λ^3 -иоданы и -броманы.

3. Экспериментально изучить возможность фотохимической генерации сульфонилнитренов из *n*-бромфенил-, *n*-толил- и метилсульфонилазидов в полярных и неполярных растворителях методом лазерной фемтосекундной ИК спектроскопии с УФ облучением. Оценить различия в кинетическом поведении алкил- и арилсульфонилнитренов.

4. С помощью метода B3LYP/6-311++G(d,p) теоретически исследовать взаимодействие синглетных и триплетных сульфонилнитренов с этиленом и 1,3-бутадиеном приводящими к образованию *N*-сульфонилазиридинов, *N*-этилиден-сульфонамидов и *N*-сульфонил-2-винилазиридинов и *N*-сульфонил-3-пирролинов.

Научная новизна и практическая значимость работы. В результате выполненных квантово-химических расчетов показано основное состояние и энергии синглет-триплетного расщепления ΔE_{sT} в сериях карбенов и нитренов с различными заместителями в рамках единого метода B3LYP/6-31+G(d). Показано, что для сульфонилнитренов и некоторых других нитренов и карбенов величина ΔE_{sT} в рамках выбранного метода и с использованием расширенного базисного набора 6-311++G(d,p) хорошо согласуется с таковой рассчитанной с использованием времязатратных высокоуровневых вычислений CCSD(T).

Впервые теоретически изучены сечения поверхности потенциальной энергии при генерации синглетных и триплетных сульфонилнитренов RSO₂N в результате элиминирования молекул N₂, HCl, NaCl, H₂O и ArX из соответствующих прекурсоров $(RSO_2N_3, RSO_2NHCl, RSO_2N(Na)Cl, RSO_2NHOH и ArX=NSO_2R, где R = CF_3, CH_3,$ Tol^{p} ; X = Br, I). Для некоторых прекурсоров установлена склонность к спонтанной перегруппировке псевдо-Курциуса/Гофмана с образованием *N*-сульфониламинов RN=SO₂. Показано, что активационные барьеры образования сульфонилнитренов увеличиваются в ряду: сульфонилимино- λ^3 -броманы (12 ÷ 25 ккал/моль) < -иоданы (15 ÷ 30 ккал/моль) < сульфонилазиды (35 ÷ 40 ккал/моль) << *N*-натрий-*N*-хлор-(~60 ккал/моль) *N*-хлор-(~65 ккал/моль) *N*-гидроксисульфонамиды \approx \approx (60 ÷ 75 ккал/моль).

Впервые с применением метода фемтосекундной времяразрешенной ИК спектроскопии с УФ облучением (267 нм) изучена генерация синглетных и триплетных сульфонилнитренов из *n*-бромфенил- (BsN₃), *n*-толил- (TsN₃) метилсульфонилазидов (MsN₃) в CH₂Cl₂ и CCl₄ (в качестве растворителей) при зарегистрировано комнатной *п*-бромфенилсульфонилазида температуре. Для электронно-возбужденное S₁ состояние, константа скорости распада которого коррелирует с константами скоростей образования релаксированного синглетного нитрена ¹(BsN) и *N*-сульфонил-*n*-броманилина. Экспериментально определено время жизни релаксированных синглетных арилнитренов $^{1}(BsN)$ и $^{1}(TsN)$. Триплетные нитрены являются более долгоживущими (>3 нс) интермедиатами, а константы скоростей их образования коррелируют с временами жизни соответствующих нитренов. При фотолизе метилсульфонилазида зарегистрирован синглетных триплетный нитрен ³(MsN) образующийся с константой τ (CH₂Cl₂) = 34±3 пс.

Впервые теоретически изучены термодинамические особенности механизмов взаимодействия сульфонилнитренов с этиленом и 1,3-бутадиеном. Показано, что синглетные сульфонилнитрены присоединяются к этилену безбарьерно высокоэкзотермично (до 90 ккал/моль) с образованием *N*-сульфонилазиридинов. Последние, способны претерпевать экзотермическое раскрытие цикла с образованием *N*-этилиденсульфонамидов ($\Delta E^{\neq} = 57 \div 60$ ккал/моль). Показано, что *N*-сульфонилазиридинов. азиридины являются кинетическими, а *N*-этилиденсульфонамиды – термодина-

взаимодействия сульфонилнитренов этиленом. мическими продуктами с что триплетный аддукт *C*-присоединения ${}^{3}(RSO_{2}N)$ Установлено, к этилену в конформации может приводить как образованию зависимости ОТ к *N*-сульфонилазиридина, так и *N*-этилиденсульфонамида. Отрыв атома водорода сульфонилнитренами образованию триплетными ОТ этилена приводит К *N*-винилсульфонамидов. Активационный барьер отрыва водорода атома на 7 ÷ 36 ккал/моль выше, чем для С-присоединения, поэтому С-присоединение является кинетически предпочтительным.

Теоретическое исследование взаимодействия синглетного И триплетного CF₃SO₂N с *s-цис-* и *s-транс-*1,3-бутадиеном показало, что синглетный нитрен 1 (CF₃SO₂N) безбарьерно дает только *N*-(трифторметил)сульфонил-2-винилазиридин по реакции син-[1+2]-циклоприсоединения, а реакция с триплетным нитреном идет постадийно. Показано, что образование *N*-(трифторметил)сульфонил-3-пирролина из *N*-(трифторметил)сульфонил-2-винилазиридина является результатом [1,3]-сигмаперегруппировки последнего, не одностадийного тропной a [1+4]-циклоприсоединения (CF_3SO_2N) к 1,3-бутадиену или внутримолекулярной рекомбинации радикальных центров в синглетном аддукте ${}^{3}(CF_{3}SO_{2}N)$ к 1,3-бутадиену после интеркомбинационной конверсии.

Личный вклад автора заключается в непосредственном выполнении всех этапов диссертационной работы – от постановки проблемы, поиска путей её решения и выполнения расчетов и экспериментов до интерпретации полученных результатов, подготовки и написании статей.

Апробация работы и публикации. Основные результаты работы обсуждались на IV Всероссийской конференции по органической химии (Москва, 2015) и XIX Молодёжной конференции-школе по органической химии кластера конференций «Оргхим-2016» (Санкт-Петербург, 2016). Отдельные разделы работы были представлены на конкурсе проектов молодых учёных ИрИХ СО РАН в рамках II и IV Научных чтений, посвященных памяти академика А. Е. Фаворского (Иркутск, 2014, 2016). Результаты диссертации опубликованы в 5 статьях и 2 тезисах докладов Всероссийских конференций.

Объем и структура работы. Диссертация изложена на 141 стр. машинописного текста. Первая глава посвящена анализу литературных данных в области спектроскопии и электронной структуры, методов генерации и реакционной способности сульфонилнитренов. Результаты собственных исследований обсуждаются во второй главе. В третьей главе описаны проведённые эксперименты и спектральные данные полученных соединений. Завершается рукопись выводами и списком цитируемой литературы (217 наименований).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Энергия синглет – триплетного расщепления ∆Е_{ST} в карбенах и нитренах

Мультиплетность карбенов и нитренов в основном состоянии играет важную роль, поскольку она определяет их реакционную способность. Основным параметром, позволяющим предсказать реакционную способность карбенов и нитренов является величина энергии синглет-триплетного расщепления $\Delta E_{ST} = E_{синглет} - E_{триплет}$, зависящая от природы заместителя при секстетном центре. В качестве синглетного состояния карбенов и нитренов использована конфигурация с закрытой оболочкой.

Задачей первого этапа работы являлось изучение влияния заместителей в сериях карбенов и нитренов на величину ΔE_{ST} в рамках единого метода (B3LYP/6-31+G(d)) и некоторых других.

1.1. Карбены

Основным состоянием метилена и других алкилкарбенов является триплет, при этом ΔE_{st} резко уменьшается при переходе от метилена (13)^{*} к метилкарбену (6) и далее по мере увеличения длины алкильного радикала (2, CHBuⁿ). Простейшие представители моно- и дигалогенкарбенов характеризуются синглетным основным состоянием, при ΔE_{ST} имеет большие абсолютные значения ЭТОМ лля дигалогенкарбенов и увеличивается с возрастанием порядкового номера галогена (-52 CF₂; -18 CCl₂; -15 CBr₂). Для карбенов с атомом галогена удаленным от секстетного центра влияние природы и числа атомов галогена C(H)CH_nHal_{3-n} на величину ΔE_{ST} носит нелинейный характер (от -0.1 C(H)CH₂F до 11 C(H)CF₃), при этом возможна перегруппировка с образованием соответствующего алкена. Так, в процессе оптимизации методом B3LYP синглетных трихлорметил- и трибромметилкарбенов обнаружена 1,2-миграция атома галогена в трихлор- и трибромэтилен (CHCX₃ \rightarrow XHC=CX₂, где X = Cl, Br). В случае синглетного C(H)CHF₂ оптимизация геометрии приводит к 1,2-миграции атома водорода и образованию CH₂=CF₂. 1,2-Миграция атома водорода/галогена не обнаружена для моно- C(H)CH₂X и дигалогенметилкарбенов $C(H)CHX_2$, где X = Cl, Br и трифторметилкарбена.

Результаты расчетов ΔE_{ST} некоторых *O*-, *S*-, *N*- и *Si*-содержащих карбенов показывают, что кислородсодержащие карбены C(H)OR имеет синглетное основное состояние (–24 R = H), а величина ΔE_{ST} незначительно увеличивается с ростом R. Аналогичная ситуация наблюдается и для меркапто- C(H)SR (–20 R = H) и аминокарбенов C(H)NR₁R₂ (–41 R₁ = R₂ = H). Ацил- и силилкарбены, напротив, более стабильны в триплетном состоянии (от 4 C(H)C(O)Me до 18 C(H)C(O)F; 22 C(H)SiH₃).

1.2. Нитрены

Основное состояние имидогена NH – триплет (51). Алкилнитрены NCH₂R в синглетном состоянии перегруппировываются в имины HN=CHR, поэтому ΔE_{ST} определить не удалось. Галогеннитрены имеют триплетное основное состояние и характеризуются высокими значениями ΔE_{ST} (38 NBr; 46 NF). Галогеналкилнитрены NCH_nX_{n-3} (где X = F, Cl, Br; n = 0, 1, 2) также стабильны в триплетном состоянии (25 ÷ 42). 1,2-Миграция атома водорода обнаружена при оптимизации геометрии синглетных NCHF₂ и NCH₂F, тогда как в случае NCHCl₂ наблюдается 1,2-миграция

^{*} Здесь и далее в п. 1 по тексту курсивом приводятся значения величины ΔE_{ST} в ккал/моль

атома хлора. Основным состоянием оксинитренов NOR, где R = H (20), CH_3 (16) является триплет. Синглетное состояние серосодержащих нитренов NSR с теми же R лежит немного ниже триплетного (-1 и -6). Аналогичная ситуация наблюдается и для аминонитренов, причем ΔE_{ST} принимает большие отрицательные значения, а абсолютное значение растет вместе с донирующей способностью аминного атома (-42 NNHNH₂; -15 NNH₂). Ацилнитрены NC(O)R характеризуются триплетным основным состоянием (от 4 NC(O)R до 15 NC(O)F).

1.3. Сульфонилнитрены

Сульфонилнитрены NSO₂R имеют триплетное состояние в качестве основного и средние значения ΔE_{ST} . При этом ΔE_{ST} слабо зависит от природы заместителя при сульфонильной группе и составляет $14 \div 16$ для R = H, Alk (B3LYP/6-31+G(d)); $16 \div 23$ для R = H, Alk, Hal, Ar (B3LYP/6-311++G(d,p)); $17 \div 22$ для R = H, Alk, Hal, Ar (CCSD(T)^{*}); и $12 \div 20$ для R = H, Alk, Hal, OH (MP2/6-311++G(d,p)). Следует отметить, что разница в значениях методов B3LYP с базисными наборами 6-31+G(d) и 6-311++G(d,p) и CCSD(T)^{*} не превышает 2 ккал/моль.

2. Формирование сульфонилнитренов из различных прекурсоров (теоретический анализ)

Теоретическое изучение генерации сульфонилнитренов NSO₂R (где R = CF₃, CH₃, Tol^{*p*}) выполнено на примере сульфонилазидов RSO₂N₃, *N*-хлорсульфонамидов RSO₂NHCl, их солей RSO₂N(Na)Cl, *N*-гидроксисульфонамидов RSO₂NHOH, сульфонилимино- λ^3 -иоданов RSO₂N=IPh и -броманов RSO₂N=BrC₆H₄CF₃^{*p*}. Для данных прекурсоров были построены сечения ППЭ при генерации синглетных и триплетных сульфонилнитренов путем пошагового элиминирования молекул N₂, HCl, NaCl, H₂O и ArX, соответственно, методом B3LYP с базисными наборами 6-311++G(d,p) для H, C, N, O, F, S, Cl, Br и DGDZVP для I.

2.1. Сульфонилазиды

Энергетические профили элиминирования N₂ из RSO₂N₃ (S₀) для R = CF₃, CH₃, Tol^{*p*} похожи; активационные барьеры формирования синглетных нитренов ¹(RSO₂N) составляют ~40, а триплетных ³(RSO₂N) – ~35 ккал/моль. Увеличение расстояния N_α…N_β в CH₃SO₂N_α=N_βN_γ приводит к увеличению энергии до 49 ккал/моль и далее резко падает до -31 ккал/моль (рис. 1). Резкому падению энергии системы предшествует постепенное уменьшение ∠CSN от ~100° до <90° вызванное миграцией метильной группы к атому азота, в конечном итоге приводящее к образованию продукта перегруппировки Курциуса – *N*-сульфонилметиламина, CH₃N=SO₂ (M-PCP). Образование ¹(RSO₂N) и ³(RSO₂N) происходит эндотермически (~*33* и ~*16*), а RN=SO₂ экзотермически (-*45* ÷ -*30*). Попытки локализовать переходное состояние (ПС) между синглетным нитреном и продуктом перегруппировки Курциуса не привели к желаемому результату. Однако, ПС может быть локализовано между исходным состоянием азида и продуктом перегруппировки Курциуса.

^{*} CCSD(T)/6-311++G(d,p)//MP2/6-311++G(d,p)

Рис. 1. Энергетические профили элиминирования молекулы N_2 из (**a**) $CF_3SO_2N_3$, (**б**) $CH_3SO_2N_3$.

Элиминирование двух заместителей при нитреновом атоме азота осуществлено путем добавления гостевого атома (Bq) и фиксации расстояний Bq…H, Bq…Cl, Bq…Na и Bq…O, что позволяет, таким образом, рассматривать в качестве координаты реакции расстояние Bq…N.

Увеличение расстояния Bq…N в системе RSO₂N…(HCl)Bq из основного S₀ приводит формированию синглетных сульфонилнитренов; состояния к активационные барьеры для $R = CH_3$ и Tol^{*p*} составляют 65 и 63 ккал/моль, тогда как обнаружено два барьера. Первый соответствует образованию $R = CF_3$ для *N*-хлортрифторметилсульфонимидовой кислоты и составляет 66 ккал/моль, второй – $^{1}(CF_{3}SO_{2}N).$ *N*-Хлортрифторметилсульфонимидовая 73 ккал/моль. кислота (интермедиат) лежит на 32 ккал/моль выше S₀ азида и на 33 ккал/моль ниже $^{1}(CF_{3}SO_{2}N)$ + HCl. Предположительно, подобное поведение CF₃SO₂NHCl связано с высокой NH кислотностью. Основное триплетное состояние нитренов лежит на 50, 49 и 46 ккал/моль выше S₀ состояния *N*-хлорсульфонамида для $R = CF_3$, CH_3 и Tol^p , соответственно. Тепловой эффект образования $RN=SO_2$ В результате перегруппировки Гофмана RSO₂NHCl → RN=SO₂ + HCl немного экзотермичен для $R = CH_3$ и Tol^p (-2 и -4 ккал/моль), в то время как для $R = CF_3$ значительно экзотермичен (-14 ккал/моль), что указывает на увеличение экзотермичности перегруппировки под влиянием электроноакцепторных R. Тем не менее, при сканирования расстояния Bq…N в RSO₂N…(HCl)Bq спонтанная перегруппировка Гофмана не обнаружена.

Увеличение расстояния N···Bq в RSO₂N···(NaCl)Bq приводит к спонтанной перегруппировке псевдо-Гофмана в *N*-сульфониламины для $R = CH_3$, Tol^{*p*}; а ее тепловой эффект составляет –12, –3 и –10 ккал/моль для $R = CF_3$, CH₃ и Tol^{*p*}. Синглетные нитрены ¹(RSO₂N) лежат на 69, 60 и 57 ккал/моль выше исходных RSO₂N(Na)Cl, соответственно, что немного меньше, чем для RSO₂NHCl.

Спонтанная перегруппировка псевдо-Гофмана наблюдается также при увеличении расстояния N···Bq в Tol^{*p*}SO₂N···(HOH)Bq, продукт которой (Tol^{*p*}N=SO₂) лежит на 20 ккал/моль ниже своего прекурсора. Тепловые эффекты реакции для $R = CF_3$ и CH₃ составляют –21 и –8 ккал/моль, соответственно. Для RSO₂NHOH, где $R = CF_3$ и CH₃, в процессе сканирования наблюдается локальный минимум, отвечающий интермедиату RSO(OH)=N(OH) ($\Delta E^{\neq} = 57$ ккал/моль), и далее образуется

¹(RSO₂N); барьер активации составляет ~60 (CF₃) и 75 ккал/моль (CH₃). Синглетные нитрены ¹(RSO₂N) лежат на 60, 49 и 53 ккал/моль выше исходных RSO₂NHOH.

Следует отметить, что энергетические барьеры образования синглетных нитренов ${}^{1}(\text{RSO}_{2}\text{N})$ из RSO₂NHCl, RSO₂N(Na)Cl и RSO₂NHOH достаточно велики и превышают таковые разложения азидов на 30 ÷ 35 ккал/моль и *N*-сульфониламидо- λ^{3} -броманов и -иоданов на ~50 ккал/моль, а тепловые эффекты реакций более эндотермичны по сравнению с азидами и *N*-амидоброманами на 33 ÷ 40 ккал/моль и 37 ÷ 49 ккал/моль, соответственно.

2.3. N-Сульфониламидоброманы и -иоданы

Энергетический профиль генерации синглетных и триплетных RSO_2N из $RSO_2N=BrC_6H_4CF_3^{\ p}$ представлен на рис. 2. Увеличение расстояния $N\cdots Br$ сопровождается монотонным увеличением энергии, что, в конечном счете, приводит к безбарьерному образованию ¹(RSO_2N), которые лежат на 33 (CF_3), 15 (CH_3) и 11 ккал/моль (Tol^p) выше исходных броманов. Триплетные нитрены ³(RSO_2N) лежат на 6 ккал/моль (CF_3) выше, а для CH_3 и Tol^p ниже на 1 и 6 ккал/моль, соответственно.

Рис. 2. Энергетические профили элиминирования молекулы $BrC_6H_4CF_3^{\ p}$ из $RSO_2N=BrC_6H_4CF_3^{\ p}$, где (1) $R = CF_3$, (2) CH_3 и (3) Tol^p .

Пересечение кривых потенциальной энергии синглетного и триплетного нитренов (интеркомбинационная конверсия, ISC, оценка сверху) наблюдается при $r_{N \cdots Br} \sim 2.5$ Å, а активационный барьер ΔE^{\neq}_{ISC} очень мал и составляет менее

8 ккал/моль. Увеличение расстояния N····Br в RSO₂N=BrC₆H₄CF₃^{*p*} (R = CH₃, Tol^{*p*}) приводит к образованию продукта перегруппировки псевдо-Курциуса RN=SO₂ и BrC₆H₄CF₃^{*p*} экзотермически с тепловым эффектом -47 и -53 ккал/моль, соответственно.

Энергетические профили элиминирования иодбензола из RSO₂N=IPh аналогичны $RSO_2N=BrC_6H_4CF_3^{p}$. Различия заключаются лишь таковым значениях в относительных энергий нитренов и RN=SO₂. Синглетные нитрены (RSO_2N) лежат на 33 (CF₃), 25 (CH₃) и 23 ккал/моль (Tol^p), а триплетные на 16 (CF₃), 9 (CH₃) и выше (Tol^p) исходных иоданов, 6 ккал/моль В то время как продукты перегруппировки псевдо-Курциуса образуются высокоэкзотермично (тепловой эффект составляет -45 (CF₃), -35 (CH₃) и -42 ккал/моль (Tol^p)). Активационный барьер ΔE^{\neq}_{ISC} составляет 12 ÷ 15 ккал/моль.

3. Фотохимическая генерация сульфонилнитренов из азидов

Фотохимическая генерация сульфонилнитренов выполнена на примере *n*-бромфенил- (BsN₃), *n*-толил- (TsN₃) и метилсульфонилазидов (MsN₃) в CCl₄ и CH₂Cl₂ (в качестве растворителей) методом фемтосекундной ИК спектроскопии с УФ облучением ($\lambda_{ex} = 267$ нм) на Ті:сапфировом лазерном комплексе (100 фс, 1 кГц, 800 нм). Отнесение полос поглощений исходных азидов и интермедиатов (синглетных и триплетных нитренов и *N*-сульфониламинов) в ИК спектре также осуществлено с применением квантово-химических расчетов на уровнях B3LYP/6-311++G(3df,3pd) и M06-2X/6-311++G(d,p).

3.1. Область валентного колебания N₃ группы (2000-2200 см⁻¹)

Короткоимпульсное облучение УФ светом с длиной волны 267 нм BsN₃ приводит к формированию отрицательного сигнала в ИК спектре при 2128 см⁻¹ (CCl₄), соответствующего v(N₃) колебанию основного состояния азида (S₀, рис. 3). Внутренняя конверсия (IC) S₁ \rightarrow S₀ BsN₃ наблюдается при $\tau_{IC} = 45$ (CCl₄) и 31 пс (CH₂Cl₂), а ее квантовый выход одинаков в обоих растворителях для BsN₃ и TsN₃ ($\Phi_{IC} = 0.15$). Скорость внутренней конверсии R_{IC} = $\Phi_{IC}\tau_{IC}^{-1}$ составляет (3.3±0.3)×10⁹ с⁻¹ (BsN₃, CCl₄). В случае с MsN₃ внутренняя конверсия S₁ \rightarrow S₀ не обнаружена. Других значимых сигналов (S₁ и T₁ состояния сульфонилазидов) в данном спектральном диапазоне не обнаружено.

Рис. 3. (а) ИК спектры с различной временной задержкой при фотолизе $BsN_3 B CCl_4$ ($\lambda_{ex} = 267 \text{ нм}$); (б) кинетическая кривая реверсии S_0 состояния BsN_3 при 2128 см⁻¹.

3.2. Область валентного колебания ароматического кольца (1500–1600 см⁻¹)

В данном спектральном диапазоне зарегистрировано электронно-возбужденное S_1 состояние BsN_3 в CH_2Cl_2 (рис. 4), в то время как в CCl_4 наблюдается низкая воспроизводимость сигнала. Полоса отрицательной интенсивности исходного $S_0 BsN_3$ наблюдается при 1575 см⁻¹ и имеет временную константу внутренней конверсии $\tau_{IC}(CH_2Cl_2) = 28\pm1$ пс, которая согласуется с таковой $v(N_3)$ колебания (31±1 пс).

Полоса положительной интенсивности в ИК спектре с максимумом при 1559 см⁻¹, детектируемый в первые 30 пс, соответствует S₁ BsN₃. Время жизни S₁ BsN₃ составляет $\tau_{S1}(CH_2Cl_2) = 22\pm 2$ пс и хорошо коррелирует с временной константой $\tau_{IC}(CH_2Cl_2) = 28\pm 1$ пс для S₀ BsN₃ в данном спектральном диапазоне. Устойчивый сигнал с максимумом при 1564 см⁻¹, наблюдаемый в интервале 50 пс – 3 нс, принадлежит триплетному нитрену ³(BsN) на основании квантово-химических расчетов полос колебаний и его отсутствии в ИК спектре по окончании лазерного эксперимента (FTIR, рис. 4а).

Рис. 4. (а) ИК спектры с различной временной задержкой в диапазоне 1500–1600 см⁻¹ при облучении BsN_3 в CH_2Cl_2 ; (б) кинетические кривые полос при 1576 см₋₁ ($S_0 BsN_3$) и 1559 см⁻¹ ($S_1 BsN_3$) в CH_2Cl_2 .

3.3. Область валентного колебания SO₂ группы (v^{as} , 1300–1400 см⁻¹)

В данном спектральном диапазоне (рис. 5) наблюдается две полосы отрицательной интенсивности исходного BsN₃, соответствующие $v^{as}(SO_2)$ и $v_2(N_3)$ при 1377 и 1393 см⁻¹ (CH₂Cl₂) и 1391 и 1387 см⁻¹ (CCl₄). При этом формирование электронно-возбужденных состояний (S₁) в ИК спектре для всех исследованных азидов не обнаружено, что, по-видимому, связано с особенностями симметрии S₁ состояния.

Электронно-возбужденное S_1 состояние BsN_3 является нестабильным, что проявляется в элиминировании молекулы азота и образовании синглетного нитрена ¹(BsN). Ввиду избытка энергии, полученной азидом при возбуждении, над необходимой для образования ¹(BsN), последний "рождается" в виде колебательно-горячего состояния и далее релаксирует (рис. 5). В CCl₄ время жизни синглетных арилсульфонилнитренов ¹(BsN) и ¹(TsN) существенно больше, чем колебательно горячих. Временные константы формирования релаксированных ¹(BsN) и ¹(TsN) составляют ~20 пс в CCl₄ (в CH₂Cl₂ – не определено). Сульфонилнитрены в синглетном состоянии являются крайне короткоживущими интермедиатами, поскольку быстро превращаются в более стабильные триплетные изомеры. Новые устойчивые полосы v^{as}(SO₂) ³(BsN) (рис. 6) и ³(TsN) формируются с временными

константами интеркомбинационной конверсии $\tau_{ISC} \sim 20$ пс (CH₂Cl₂) и 0.70±0.23 и 0.44±0.26 нс (CCl₄), соответственно.

Рис. 5. 3D-ИК спектры полученные при фотолизе $BsN_3 B$ (**a**) $CCl_4 \mu$ (**б**) CH_2Cl_2 ($\lambda_{ex} = 267$ нм) в области 1320(1300) - 1400 см⁻¹.

Рис. 6. (а) Кинетические кривые полос при 1323 см⁻¹ { 3 (BsN) и пик горячего синглетного нитрена}, 1148 см⁻¹ { v^{s} (SO₂), 3 (BsN)} и 1360 см⁻¹ (B-PCP) в CH₂Cl₂; (б) кинетические кривые полос при 1360 см⁻¹ {релаксированный 1 (BsN)} и

1347 см⁻¹ {пик горячего синглетного нитрена и 3 (BsN)} в CCl₄.

Наряду с образованием нитренов при фотолизе сульфонилазидов в спектре наблюдается еще одна полоса, соответствующая продукту перегруппировки Курциуса (RN=SO₂, R-PCP). *N*-сульфонил-*n*-броманилин (B-PCP) детектируется в спектре при 1365 (CCl₄) и 1360 см⁻¹ (CH₂Cl₂, см. рис. 5). Полоса при 1365 см⁻¹ значительно перекрывается с полосой ¹(BsN), поэтому временная константа формирования B-PCP определена только в CH_2Cl_2 , где составляет 17±1 пс (рис. 6) и хорошо коррелирует с временем жизни S1 состояния BsN3. Образование R-PCP при фотохимических условиях происходит исключительно в результате перегруппировки в электронно-возбужденном состоянии сульфонилазида, а не из синглетных сульфонилнитренов. Данное обстоятельство также подтверждается невозможностью локализации переходного состояния между 1 (BsN) и B-PCP В результате выполненных квантово-химических расчетов.

Исследование фотохимических превращений TsN_3 показало сходство с таковой BsN_3 вследствие структурного подобия. Однако для MsN_3 не удалось зарегистрировать полос поглощения ни синглетного нитрена ¹(MsN), ни M-PCP. Для MsN_3 также не наблюдается внутренняя конверсия. Тем не менее, устойчивый сигнал (>3 нс) положительной интенсивности обнаружен в области $v^s(SO_2)$ при 1134 см⁻¹

Рис. 7. Механизм фотохимических превращений сульфонилазидов при облучении 267 нм УФ светом.

(CH₂Cl₂), соответствующий образованию триплетного нитрена ³(MsN), временная константа формирования которого $\tau_{ISC} = 34\pm3$ пс. Суммарная схема фотохимических превращений исследованных сульфонилазидов приведена на рис. 7.

4. Взаимодействие сульфонилнитренов с этиленом

Механизм взаимодействия триплетных синглетных И сульфонилнитренов RSO_2N , гле $R = CF_3$, CH₃ и Tol^{*p*}, с этиленом изучен методом B3LYP/6-311++G(d,p). Несмотря на кажущуюся простоту реакционной системы, в которой, на первый взгляд, могут протекать лишь реакции *C*-

присоединения и отрыва атома водорода, показана теоретическая возможность формирования целого ряда продуктов: *N*-сульфонилазиридинов (1), *N*-этилиден-сульфонамидов (2), *N*-винилсульфонамидов (3) и 4,5-дигидро-1,2,3-оксатиазол-2-оксидов (4) (рис. 8).

Рис. 8. Продукты взаимодействия сульфонилнитренов с этиленом.

N-сульфонилазиридинов 1 Образование ИЗ этилена И синглетных сульфонилнитренов $^{1}(RSO_{2}N)$ происходит высокоэкзотермически (рис. 9a). Тем не менее, *N*-сульфонилазиридины 1 следует рассматривать в качестве кинетических продуктов реакции, поскольку тепловой эффект их образования ниже, чем соответствующих *N*-этилиденсульфонамидов 2, являющихся термодинамическими продуктами (табл. 1). Попытки локализовать переходное состояние между 1 и 2 (ПС₁₋₂) путем увеличения расстояния между атомами N и C(1) в 1 привели к нахождению нового локального минимума, соответствующего 4,5-дигидро-1,2,3-оксатиазол-2-оксиду 4 (ПС₁₋₄ обнаружено только для $R = CF_3$), в то время как ΠC_{1-2} обнаружено для всех R.

Высокие активационные барьеры образования **2** из **1** через ΠC_{1-2} обусловлены: 1) вкладом энергии, необходимой для раскрытия азиридинового кольца и 2) барьером 1,2-миграции атома водорода. Поэтому, несмотря на экзотермичность реакции **1** \rightarrow **2**, высокий энергетический барьер, разделяющий эти две молекулы, делает превращение **1** \rightarrow **2** маловероятным.

Рис. 9. Энергетические профили (**a**) присоединения синглетного ${}^{1}(CF_{3}SO_{2}N)$ к этилену; (**б**) *С*-присоединения и (**в**) отрыва атома водорода ${}^{3}(CF_{3}SO_{2}N)$ от этилена.

С-Присоединение триплетных сульфонилнитренов ³(RSO₂N) к этилену (рис. 96, табл. 1) протекает безбарьерно путем образования триплетных дирадикальных аддуктов RSO₂N'CH₂C'H₂ ³(5) и ³(5') различающихся ориентацией терминальной CH₂ группы за счет вращения вокруг связи N–C_{sp}3 в SNC_{sp}3C_{sp}2 фрагменте. В зависимости от заместителя при сульфонильной группе двугранный угол \angle SNCC составляет 165–170° в ³(5) и 35–49° в ³(5'). Разница в энергии между ³(5) и ³(5') составляет ~1.5 ккал/моль в пользу ³(5) для всех R (табл. 1), а барьер вращения вокруг N–C_{sp}3 не превышает 2 ккал/моль.

 $^{3}(5) \rightarrow ^{1}(5)$ конверсия Интеркомбинационная является эндотермическим процессом; формирование ¹(5) из ³(RSO₂N) и этилена слабоэкзотермично для $R = CF_3$ (-0.2 ккал/моль) и эндотермично для $R = CH_3$ и Tol^p (+3 и +7 ккал/моль) (табл. 1). Смена мультиплетности в реакции ${}^{3}(5') \rightarrow {}^{1}(5')$ протекает также эндотермически (табл. 1). Последующая оптимизация геометрии синглетных аддуктов ¹(5) из оптимизированной геометрии ³(5) приводит к образованию *N*-этилиденсульфонамидов 2. В противоположность, оптимизация геометрии конформера $^{1}(5')$ приводит к образованию исключительно *N*-сульфонилазиридинов **1**. Малая разница в энергии и низкий барьер взаимопревращения между ³(5) и ³(5') позволяют, на основании принципа Кертина-Гаммета, сделать вывод о том, что движущей силой образования *N*-этилиденсульфонамидов 2, в отличие от *N*-сульфонилазиридинов 1 в равновесной системе ${}^{3}(5) \leftrightarrows {}^{3}(5')$ является низкая энергия 2, а также, в соответствии с принципом Белла-Эванса-Поляни, низкий активационный барьер образования 2 (в случае $R = CF_3$ и СН₃).

Первая стадия отрыва атома водорода триплетными сульфонилнитренами проходит через переходное состояние ПС_Н и приводит к образованию радикальной пары, удерживаемой внутримолекулярной водородной связью, образуемой сульфонильным атомом кислорода и атомом водорода СН₂ группы этилена

(триплетный аддукт ³(6), рис. 9в, табл. 1). Формирование аддуктов ³(6) протекает эндотермически (+8.8, +10.6 и +14.3 ккал/моль для $R = CF_3$, CH_3 и Tol^p) по отношению к нереагирующей системе. Последующая интеркомбинационная конверсия ${}^{3}(\mathbf{6}) \rightarrow {}^{1}(\mathbf{6})$ эндотермична на 0.4 ккал/моль для R = CH₃ и Tol^{*p*}, в то время как для R = CF₃ сильно эндотермична (28 ккал/моль, рис. 9в). Последующая оптимизация геометрии синглетных аддуктов ¹(6) для всех R приводит к формированию *N*-винилсульфонамидов **3** с понижением энергии системы (табл. 1).

Таблица 1

RSO_2N (R = CF ₃ , CH ₃ , Tol ^{<i>p</i>}) с этиленом (B3LYP/6-311++G(d,p))					
	R				
Структура	CF ₃	CH ₃	Tol^p		
Присоединение ¹ (RSO ₂ N) к этилену					
$^{1}(\mathbf{RSO}_{2}\mathbf{N}) + \mathbf{C}_{2}\mathbf{H}_{4}$	0.0	0.0	0.0		
<i>N</i> -Сульфонилазиридин 1	-89.8	-86.0	-82.9		
ПС ₁₋₂	-32.9	-26.5	-22.9		
ПС ₁₋₄	-30.1	_	—		
<i>N</i> -Этилиденсульфонамид 2	-111.1	-107.4	-104.4		
ПС ₂₋₄	-37.5	-28.3	-24.7		
4,5-Дигидро-1,2,3-оксатиазол-2-оксид 4	-82.4	-78.0	-76.2		
С-Присоединение ³ (RSO ₂ N) к этилену					
$^{3}(RSO_{2}N) + C_{2}H_{4}$	0.0	0.0	0.0		
³ (5)	-21.0	-18.8	-15.1		
¹ (5)	-0.2	2.6	6.8		
<i>N</i> -Этилиденсульфонамид 2	-94.3	-90.8	-87.3		
<u> </u>	-19.9	-17.0	-13.4		
¹ (5')	0.9	3.9	6.3		
<i>N</i> -Сульфонилазиридин 1	-73.0	-69.4	-65.8		
Отрыв атома водорода ³ (RSO ₂ N) от этилена					
ПСн	12.6	15.0	17.9		
<u> </u>	8.8	10.6	14.3		
¹ (6)	36.7	11.0	14.7		
<i>N</i> -Винилсульфонамид 3	-87.9	-84.3	-81.5		
ПС3-2	-24.7	-20.0	-17.6		
<i>N</i> -этилиденсульфонамид 2	-94.3	-90.8	-87.3		

Относительные энергии (ккал/моль) интермедиатов в реакции					
синглетных и триплетных сульфонилнитренов					
RSO_2N (R = CF ₃ , CH ₃ , Tol ^{<i>p</i>}) с этиленом (B3LYP/6-311++G(d,p))					
	R				
Структура	CF ₃	CH ₃	Tol ^p		
Присоединение $^{1}(RSO_{2}N)$ к этилену					
$^{1}(\mathbf{RSO}_{2}\mathbf{N}) + \mathbf{C}_{2}\mathbf{H}_{4}$	0.0	0.0	0.0		
<i>N</i> -Сульфонилазиридин 1	-89.8	-86.0	-82.9		
ПС1-2	-32.9	-26.5	-22.9		
ПС	20.1				

Перегруппировка *N*-винилсульфонамидов **3** в *N*-этилиденсульфонамиды **2** протекает путем 1,3-миграции атома водорода через ПС₃₋₂ (∆Е[≠]_{3→2} ≈ 65 ккал/моль; табл. 1). Высокий активационный барьер вызван, по-видимому, ограничениями, правилами сохранения орбитальной симметрии. налагаемыми которые предсказывают, что при термолизе 1,3-миграция атома водорода запрещена по симметрии. Более того, такая миграция протекает антрафациально, что в свою очередь стерически невозможно.

Сравнение результатов в табл. 1 показывает, что взаимодействие этилена с триплетными сульфонилнитренами по пути *C*-присоединения ($\Delta E^{\neq} < 7$ ккал/моль) термодинамически более предпочтительно над отрывом атома водорода ($\Delta E^{\neq} = 15 \div 36$ ккал/моль) на ~36 (CF₃) и 11 ккал/моль (CH₃ и Tol^{*p*}).

Влияние неспецифической природы растворителя на энергетический профиль взаимодействия синглетного и триплетного трифторметилсульфонил-нитрена CF_3SO_2N с этиленом изучено в рамках модели поляризуемого континуума (IEF-PCM). В качестве растворителей рассмотрены метанол и тетрахлорметан. Расчеты показывают, что использование модели PCM незначительно влияет на относительные энергии продуктов, интермедиатов и переходных состояний и не приводит к изменению направления реакции трифторметилсульфонилнитрена с этиленом.

4. Присоединение трифторметилсульфонилнитрена к 1,3-бутадиену

Реакции сопряженных 1,3-диенов с сульфонилнитренами являются малоизученными. Однако, известно, что они приводят к образованию азиридинов путем [1+2]-циклоприсоединения к одной двойной связи диена или 3-пирролинов путем [1+4]-циклоприсоединения по терминальным атомам углерода диена. Так, в настоящей работе теоретически изучена возможность формирования N-(трифторметил)сульфонил-2-винилазиридина 1 и N-(трифторметил)сульфонил-3-пирролина 7 в результате присоединения СF₃SO₂N в синглетном и триплетном состоянии к *s-цис-* и *s-транс*-1,3-бутадиену (рис. 10).

Рис. 10. Продукты взаимодействия CF₃SO₂N с *s-цис-* и *s-транс-*1,3-бутадиеном.

[1+2]-Циклоприсоединение ¹(CF₃SO₂N) к *s-цис*-1,3-бутадиену приводит к безбарьерному формированию 2-винилазиридина **1** (кинетический продукт) с уменьшением энергии системы до -86 ккал/моль (рис. 11а) относительно нереагирующей системы. В случае *s-mpaнc*-1,3-бутадиена образование **1** немного более экзотермично (-89 ккал/моль). Стоит отметить, что барьер вращения винильной группы в **1** вокруг C(2)–C_{sp}2 протекает практически свободно ($\Delta E_{rot} < 3.5$ ккал/моль).

Формирование *N*-(трифторметил)сульфонил-3-пирролина **7** (термодинамический продукт) происходит в результате [1,3]-сигматропной перегруппировки в 2-винилазиридине **1** (*s-цис* конфигурация исходного 1,3-бутадиена) через переходное состояние $\Pi C_{1.7}$ ($\Delta E^{\neq}_{1.7} \approx 40$ ккал/моль). Попытки найти $\Pi C_{1.7}$ в случае с *s-mpaнс*-конфигурацией конформера *N*-(трифторметил)сульфонил-2-винилазиридина **1** не привели к желаемому результату. Тепловой эффект образования **7** из исходного ¹(CF₃SO₂N) и *s-цис*-1,3-бутадиена составляет –114 ккал/моль, что на 25 ккал/моль больше, чем при формировании *N*-(трифторметил)сульфонил-2-винилазиридина **1**.

Присоединение ³(CF₃SO₂N) к *s-цис-* и *s-транс-*1,3-бутадиену приводит к формированию дирадикалов **8-цис** и **8-транс** экзотермически (рис. 11б). Барьер вращения терминальной винильной группы C(3)=C(4) вокруг C(2)–C(3) связи в **8** составляет ~15 ккал/моль в противоположность практически свободному вращению вокруг C(2)–C_{sp}² связи в *N*-(трифторметил)сульфонил-2-винилазиридине **1**. Таким

образом, фрагмент C(2)–C(3)–C(4) в **8-цис** и **8-транс** является π -аллильным радикалом, спиновая электронная плотность в котором локализована на C(2) и C(4) атомах (~0.73 и ~1.0; спиновая плотность по Малликену).

Рис. 11. Энергетические профили формирования *N*-(трифторметил)сульфонил-2винилазиридина **1** и *N*-(трифторметил)сульфонил-3-пирролина **7** в результате взаимодействия CF₃SO₂N в (**a**) синглетном и (**б**) триплетном состоянии с *s*-цис- и *s*-транс-1,3-бутадиеном.

Интеркомбинационная конверсия триплетных 8-цис и 8-транс в синглетные происходит эндотермически, тепловой эффект реакции составляет +6И +16 ккал/моль, соответственно. Последующая оптимизация геометрии дирадикалов 8-иис и 8-транс в синглетном состоянии приводит к формированию исключительно 2-винилазиридина 1. Как видно, на рис. 116, синглетный *s-иис*-дирадикал (8-иис) структурно находится на грани циклизации, приводящей к образованию *N*-(трифторметил)сульфонил-3-пирролина 7 путем внутримолекулярной рекомбинации радикальных центров и формирования N–C(4) связи. Однако, попытки симулировать данный процесс не увенчались успехом и 3-пирролин 7 формируется исключительно в результате [1,3]-сигматропной перегруппировки 2-винилазиридина 1 (рис. 12).

Рис. 12. Схема элементарных стадий взаимодействия синглетного и триплетного трифторметилсульфонилнитрена CF_3SO_2N с *s-цис-* и *s-mpahc-*1,3-бутадиеном.

Выводы

1. Выполнено комплексное экспериментально-теоретическое исследование процессов генерации сульфонилнитренов, их превращений, перегруппировок и взаимодействия с алкенами методами молекулярной фемтосекундной спектроскопии и квантовой химии на различных уровнях – от теории функционала плотности до метода связанных кластеров.

2. Изучение генерации сульфонилнитренов из *п*-бромфенил-, *п*-толил- и метилсульфонилазидов фемтосекундной времяразрешенной методом ИК спектроскопии облучением позволило зарегистрировать с УΦ электронновозбужденное состояние S₁ *n*-бромфенилсульфонилазида азида с константой скорости распада в CH₂Cl₂ 21±3 пс, которая коррелирует с константами скоростей образования синглетного нитрена $^{1}(Br^{p}C_{6}H_{4}SO_{2}N) \sim 20$ пс и продукта перегруппировки Курциуса Br^{*p*}C₆H₄N=SO₂ 17±1 пс. Время жизни релаксированных синглетных нитренов ¹($Br^{p}C_{6}H_{4}SO_{2}N$) и ¹($Tol^{p}SO_{2}N$) в CCl₄ составляет 0.75±0.10 и 0.66±0.10 нс, соответственно. Время жизни триплетных нитренов превышает 3 нс, а константы их образования коррелируют с временами жизни соответствующих синглетных нитренов. Константа скорости образования триплетного метилсульфонилнитрена $^{3}(CH_{3}SO_{2}N)$ CH_2Cl_2 составляет 34±3 пс. В тогда как синглетный метилсульфонилнитрен не зафиксирован.

3. Показано, что метод функционала плотности B3LYP/6-31+G(d) дает энергии синглет-триплетного расщепления карбенов и нитренов, близкие к вычисленным с помощью времязатратных высокоуровневых методов.

4. Теоретический анализ сечений поверхности потенциальной энергии при генерации сульфонилнитренов путем элиминирования молекул N₂, HCl, NaCl, H₂O и ArX из соответствующих прекурсоров (RSO₂N₃, RSO₂NHHal, RSO₂N(Na)Hal, B3LYP/6-311++G(d,p) $ArX=NSO_2R$) уровне RSO₂NHOH, на показал. что формирующийся вначале синглетный нитрен претерпевает интеркомбинационную состояние $S \rightarrow T$ или перегруппировку конверсию в триплетное псевло-Курциуса/Гофмана в *N*-сульфониламин RN=SO₂. Энергия активации образования нитренов увеличивается в ряду: сульфонилимино- λ^3 -броманы (12 ÷ 25 ккал/моль) < -иоданы (15 ÷ 30 ккал/моль) < сульфонилазиды (35 ÷ 40 ккал/моль) << N-натрий-*N*-хлор- (~60 ккал/моль) ≈ *N*-хлор- (~65 ккал/моль) ≈ *N*-гидроксисульфонамиды (60 ÷ 75 ккал/моль).

5. Теоретический анализ взаимодействия сульфонилнитренов RSO₂N (R = CF₃, CH_3 , Tol^p) с этиленом на уровне B3LYP/6-311++G(d,p) показал, что синглетные нитрены экзотермично (-83 ÷ -90 ккал/моль) присоединяются к этилену, образуя *N*-сульфонилазиридины, как кинетически контролируемые продукты. Последние способны претерпевать экзотермическое раскрытие цикла с образованием контролируемых *N*-этилиденсульфонамидов. термодинамически продуктов _ Триплетные сульфонилнитрены реагируют с этиленом по пути С-присоединения или отрыва атома водорода. Показано, что триплетный аддукт, в зависимости от конформации, может превращаться как в *N*-сульфонилазиридин, так и в *N*-этилиденсульфонамид. Отрыв атома водорода от этилена приводит к образованию *N*-винилсульфонамидов. Активационный барьер отрыва атома водорода на 7 ÷ 36 ккал/моль выше, чем для С-присоединения, поэтому кинетически предпочтительным процессом является С-присоединение. Учет влияния неспецифической сольватации среды

18

методом РСМ в реакции этилена с трифторметилсульфонилнитреном выявил лишь незначительное изменение относительных энергий интермедиатов и продуктов.

6. Теоретическое исследование взаимодействия нитрена CF_3SO_2N с *s-цис-* и *s-mpahc-*1,3-бутадиеном на уровне B3LYP/6-311++G(d,p) показало, что образуется продукт [1+2]-циклоприсоединения, *N*-(трифторметил)сульфонил-2-винилазиридин. В случае синглетного нитрена процесс его образования протекает безбарьерно и одностадийно, а в случае триплетного – постадийно. Продукт [1+4]-циклоприсоединения, *N*-(трифторметил)сульфонил-3-пирролин, образуется из *N*-(трифторметил)сульфонил-2-винилазиридина в результате [1,3]-сигматропной перегруппировки, а не путем одностадийного [1+4]-циклоприсоединения ¹(CF₃SO₂N) к 1,3-бутадиену или внутримолекулярной рекомбинации радикальных центров в синглетном состоянии аддукта *C*-присоединения ³(CF₃SO₂N) к 1,3-бутадиену после его интеркомбинационной конверсии.

Основные результаты работы изложены в следующих публикациях:

1. Kuzmin, A. V. Exploring Photochemistry of *p*-Bromophenylsulfonyl, *p*-Tolylsulfonyl and Methylsulfonyl Azides by Ultrafast Time-Resolved UV pump – IR Probe Spectroscopy and Computational Algorithms / A. V. Kuzmin, C. Neumann, L. J. G. W. van Wilderen, B. A. Shainyan, J. Bredenbeck // Phys. Chem. Chem. Phys. – 2016. – Vol. 18, N_{2} 12. – P. 8662-8672.

2. Kuzmin, A. V. Computational Study of Singlet and Triplet Sulfonylnitrenes Insertion into the C–C or C–H Bonds of Ethylene / A. V. Kuzmin, B. A. Shainyan // J. Phys. Org. Chem. – 2014. – Vol. 27, N_{2} 10. – P. 794-802.

3. Shainyan, B. A. Computational Study of Singlet and Triplet Sulfonylnitrenes Insertion into 1,3-Butadienes: 1,2- or 1,4-Cycloaddition? / B. A. Shainyan, A. V. Kuzmin // J. Phys. Org. Chem. -2014. -Vol. 27, No 6. -P. 527-531.

4. Shainyan, B. A. Sulfonyl Nitrenes from Different Sources: Computational Study of Formation and Transformations / B. A. Shainyan, A. V. Kuzmin // J. Phys. Org. Chem. – 2014. – Vol. 27, № 2. – P. 156-162.

5. Shainyan, B. A. Carbenes and Nitrenes. An Overview / B. A. Shainyan, A. V. Kuzmin, M. Yu. Moscalik // Computational and Theoretical Chemistry. – 2013. – Vol. 1006. – P. 52-61.

6. Кузьмин, А. В. Изучение фотохимии арилсульфонил- и метилсульфонил-азидов методами фемтосекундной времяразрешенной ИК спектроскопии и квантовохимических вычислений. Материалы IV Всероссийской конференции по органической химии / А. В. Кузьмин. – Москва, Россия. – 2015. – С. 178.

7. Кузьмин, А. В. Изучение фотохимии арилсульфонил- и метилсульфонил-азидов методом фемтосекундной ИК спектроскопии. Материалы XIX Молодёжной конференции-школы по органической химии кластера конференций «Оргхим-2016» / А. В. Кузьмин. – Санкт-Петербург, Россия. – 2016. – С. 132-133.

Основные результаты получены с использованием материально-технической базы Байкальского аналитического центра коллективного пользования СО РАН.